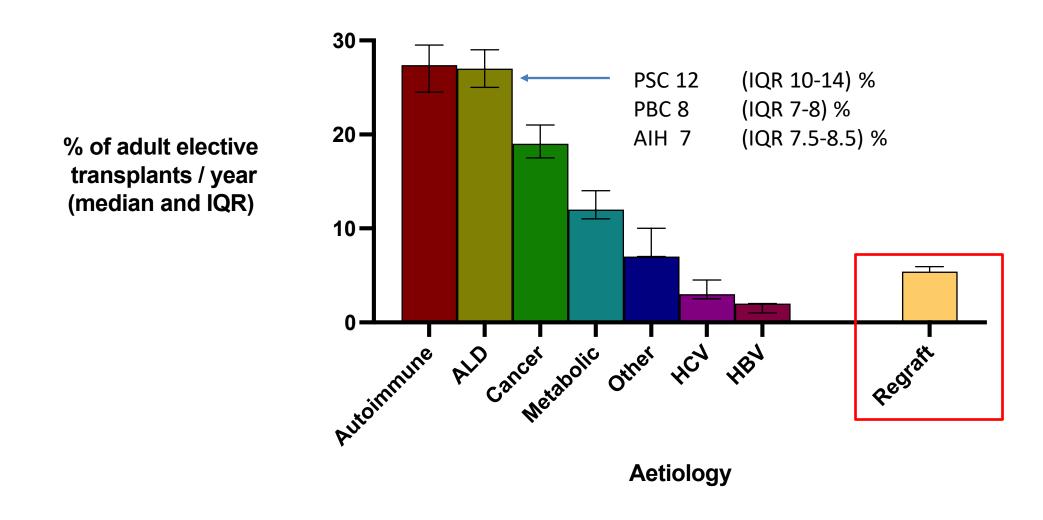


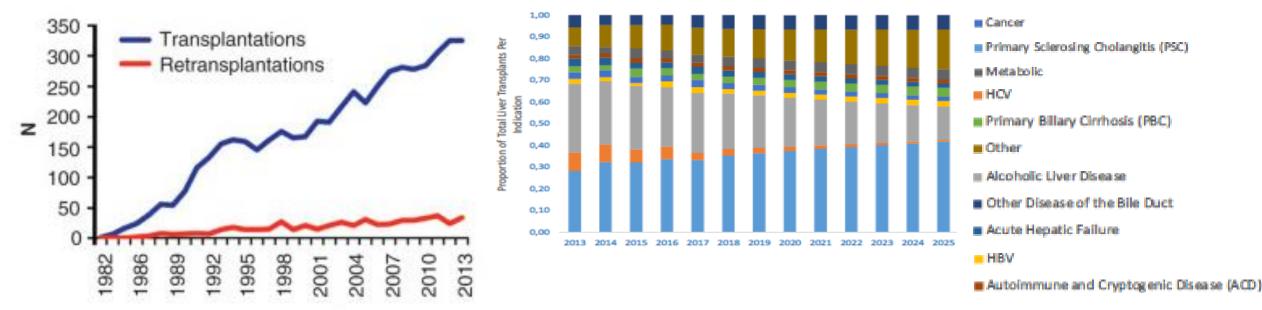
Gut Microbiome Therapeutics in Primary Sclerosing Cholangitis (PSC)



Palak J. Trivedi; <a>@CholestasisDoc

NIHR Birmingham BRC,

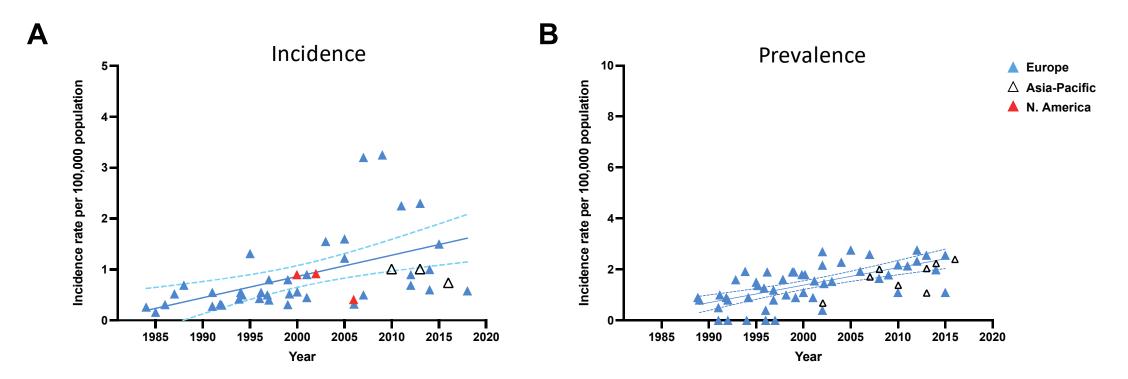
Centre for Liver and Gastrointestinal Research


Autoimmune liver disease: the lead indication for adult liver transplantation in the UK

NHSBT summary data 2017-2022

PSC is one of the most common indications for liver transplantation

Nordic liver transplant programme15.3% are performed for PSC

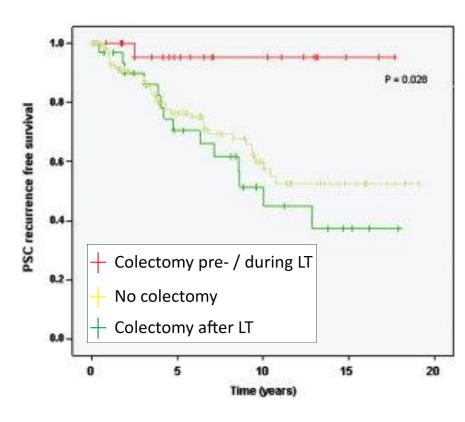


French liver transplant programme

- PSC will be the lead indication by 2025

- 1) Fosby et al. Scand. J. Gastro 2015
 - 2) Conolly et al. J. Hepatol. 2020A

PSC is rare but the incidence and prevalence are rising


PSC is not just a condition of the liver

70-80% have inflammatory bowel disease **Right-sided** Paninflammation colitis predominant Increased lifetime risk of colonic cancer (30%) Rectal sparing (50-65%)

The presence /activity of colitis and recurrent PSC post-transplant

• Birmingham (UK)¹

Alabraba E. *et al. Liver Transplantation* 2009
 Ravikumar *et al. J. Hepatol.* 2015
 Hildebrand *et al. Liver Transplantation* 2015
 Lindstrøm et al. Scand. J. Gastro. 2018

Hazard ratios (vs. pre-LT colectomy)

- Post-LT colectomy: 11.8
- No colectomy: 8.85

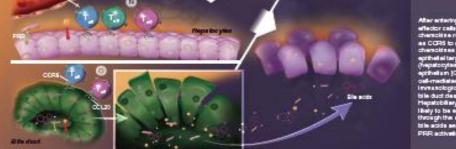
Validation:

- UK (multiple centres) —Presence of UC post-LT H.R.: 2.4
- Germany (multicentre)³ –Presence of UC post-LT H.R.: 2.07

–Active colitis post-LT H.R.: 2.31

• Nordic transplant registry —Colectomy pre-LT H.R.: 0.49

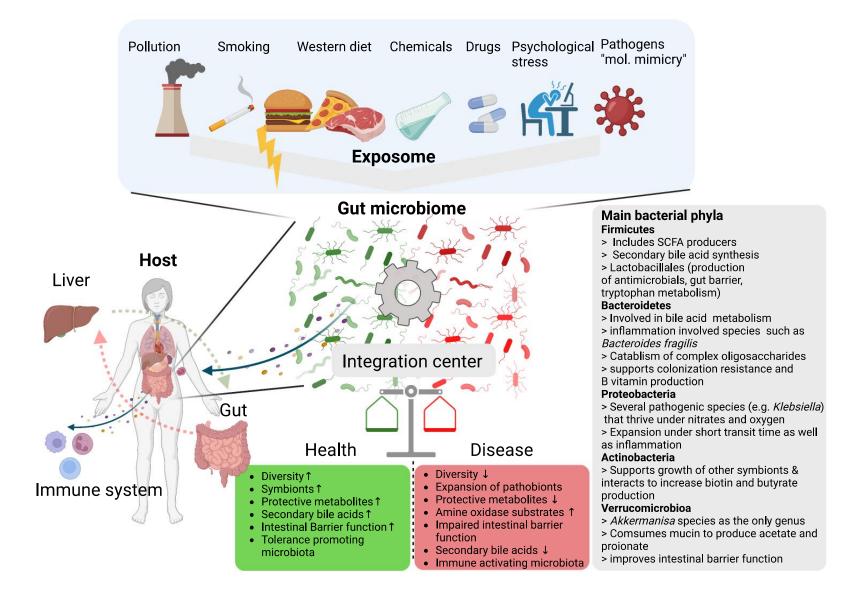
Colectomy prior to transplantation lowers the risk of recurrent PSC


Study or Subgroup log[Hazard Ratio] SE V			Weight	Hazard Ratio				
Study or Subgroup	log[Hazaru Katio]	3E	weight	IV, Random, 95% CI		IV, Random, 9	5% CI	
Alexander et al. 2008	-0.02	0.83	6.8%	0.98 [0.19, 4.99]				
Gelley et al. 2014	-0.87	1.11	3.8%	0.42 [0.05, 3.69]			- 63	
Gordon et al. 2016	0.02	0.48	20.2%	1.02 [0.40, 2.61]		-+		
Lindstrom et al. 2018	-0.71	0.33	42.7%	0.49 [0.26, 0.94]				
Moncrief et al. 2010	-1.27	1.01	4.6%	0.28 [0.04, 2.03]				
Ravikumar et al. 2015	-0.21	0.46	22.0%	0.81 [0.33, 2.00]				
Total (95% CI)			100.0%	0.65 [0.42, 0.99]		•		
Heterogeneity: Tau ² = ($0.00; Chi^2 = 2.92, df$	= 5 (P	= 0.71);	$l^2 = 0\%$	-		10	10
Test for overall effect: 2					0.01	0.1 1	10	10

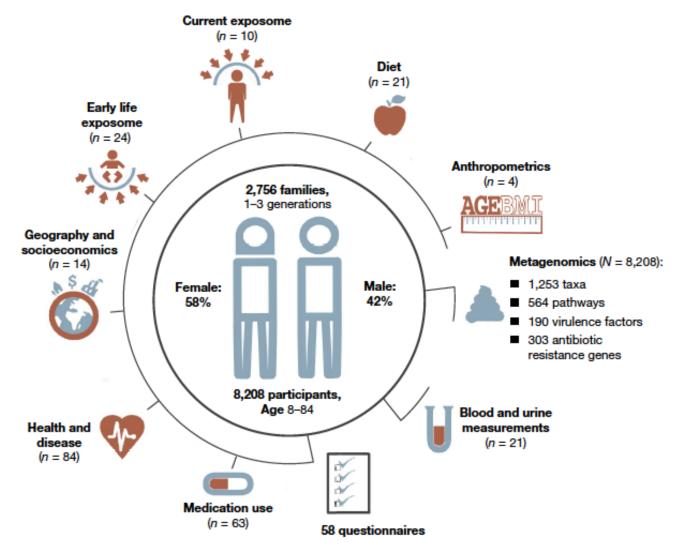
B) IBD presence			IBD	No IBD		Hazard Ratio		Hazard Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
Alabraba et al. 2009	0.55	0.3	162	68	26.1%	1.73 [0.96, 3.12]			
Alexander et al. 2008	2.1	1.07	59	10	3.2%	8.17 [1.00, 66.50]			_
Egawa et al. 2011	0.65	0.39	44	49	18.4%	1.92 [0.89, 4.11]		-	
Gelley et al. 2014	-0.89	0.96	21	4	4.0%	0.41 [0.06, 2.70]	· · · ·		
Gordon et al. 2016	0	0.37	217	90	19.8%	1.00 [0.48, 2.07]			
Hildebrand et al. 2016	0.85	0.36	220	76	20.6%	2.34 [1.16, 4.74]			
Moncrief et al. 2010	0.96	0.66	48	11	7.8%	2.61 [0.72, 9.52]			
Total (95% CI)			771	308	100.0%	1.73 [1.17, 2.54]		•	
Heterogeneity: $Tau^2 = 0$.06; Chi ² = 7.70, df	= 6 (P	= 0.26	$i); I^2 = 22$	%		0.01 0.1	10	100
Test for overall effect: Z	r = 2.78 (P = 0.006)						0.01 0.1	1 10	100

<section-header><section-header><section-header>

As a consump service of intrinsical influence allow, asteric pathogens instructions beyond the account between the theory and thread box and the service and theory and theory and theory and thread box influence and effective prophetory and the service influence and the service and the service influence and the service and the service and the service influence and the service and the service influence and anoppoint book influence and the service and the service is the service and the service and the service is the service is the service and the service is the service is the service and the service is the service is the service and the service is the service is the service cold is conservice is the service is the service and the service is the service is the service and the service is the service is the service cold is conservice is the service is the service and the service is the service is the service is the and the service is the service is the service is the cold is conservice is the service in the service is the and the service is the service is the service is the and the service is the service



After extenting the liver, affector relia use chemobile exceptors such as CCRS to reapport chemobile a secretarity by aptifield at type rolling (repativelation (N) or billing aptifield in (N) exciting aptimum (N) exciting in chemobile duct destruction hispatchill explanations in hispatchill explanations through the action of facto this acids and hand filtered PER activation.


- Enteric microbiome changes
 - Reduced microbial diversity
 - Enrichment of amine-producing species
 - Increased carcinogenic potential
- Disrupted intestinal barrier
 - Lower expression of tight-junction proteins
 - Reduced short-chain fatty acids
- Dysregulated mucosal immunity
 - Heightened T_h17 responses to pathogen stimulation
 - Pertubed regulatory T-cell function
 - Aberrant mucosal lymphocyte homing
- Pathological enterohepatic bile acid shifts
 - Reduced TGR5 expression
 - Increased gut FXR expression

Gut microbiome integrates environmental influences into host physiology

Schneider, Kummen, Trivedi, Hov; Hepatology 2023

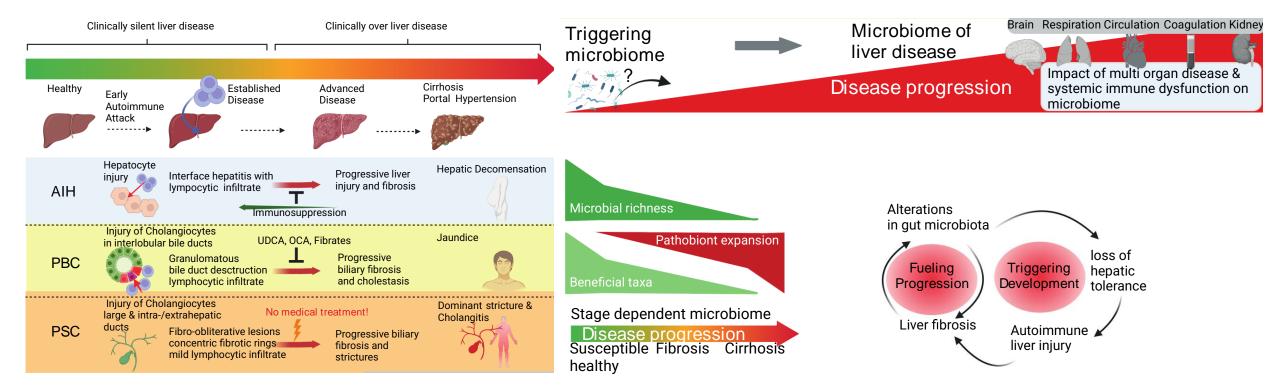
Dutch microbiome project

Gacesa et al. Nature 2022

Heritability and effect of cohabitation on the gut microbiome

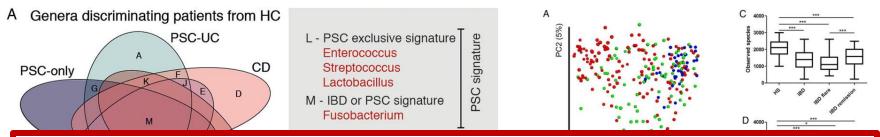
 a Heritability (bacterial species) 						
A. muciniphila		—				
P. goldsteinii -	—					
B. longum -						
Phascolarctobacterium succinatutens -						
B. coprocola						
Clostridium citroniae						
B. uniformis						
Mitsuokella multacida -						
Bacteroides eggerthii -						
Dialister invisus						
Ruminococcus bromii -	- I					
Bacteroides faecis						
Bacteroides coprophilus -						
Lachnospiraceae sp.8.1.57FAA						
F. plautii -	·					
Bacteroides massiliensis	- I		•			
B. finegoldii -			•			
Parabacteroides merdae -	- I		•			
Sutterella wadsworthensis -						
Oxalobacter formigenes			•			
-	j i	0.25	0.50	0.	75	1.00
		Microl	biorne variar	nce expla	ined	

b Heritability (bacterial biochemical pathways)

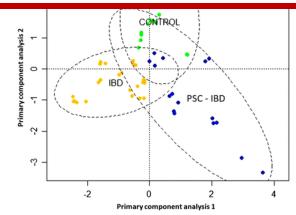

PWY0-845: superpathway, pyridoxal 5'-phosphate biosynthesis and salvage · . . PYRIDOXSYN-PWY: pyridoxal 5'-phosphate biosynthesis I -. . NAGLIPASYN-PWY: lipid-IV, biosynthesis (E. coli) . 1CMET2-PWY: N¹⁰-formyl-tetrahydrofolate biosynthesis - -PWY-5101: L-isoleucine biosynthesis II -- -PWY-6703: preQ, biosynthesis - -PANTO-PWY: phosphopantothenate biosynthesis I 1.... ANAEROFRUCAT-PWY: homolactic fermentation - -PWY0-1319: CDP-diacylglycerol biosynthesis II 1.8 PWY-5667: CDP-diacylglycerol biosynthesis I - -RHAMCAT-PWY: L-rhamnose degradation I - -PWY-7663: gondoate biosynthesis (anaerobic) - -PWY-621: sucrose degradation III (sucrose invertase) - -COBALSYN-PWY: adenosylcobalamin salvage from cobinamide I 1.... PWY-5973: cis-vaccenate biosynthesis 4. 2 PWY-7228: superpathway, guanosine nucleotides de novo biosynthesis I - -PWY-7197: pyrimidine deoxyribonucleotide phosphorylation -- -PWY-5484: glycolysis II (from fructose 6-phosphate) - -PWY-6125: superpathway, guanosine nucleotides de novo biosynthesis II -- -GLYCOLYSIS: glycolysis I (from glucose 6-phosphate) - -0.25 0.50 Cohousing Family Environment Additive genetics

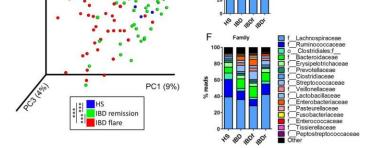
Gacesa et al. Nature 2022

0.75

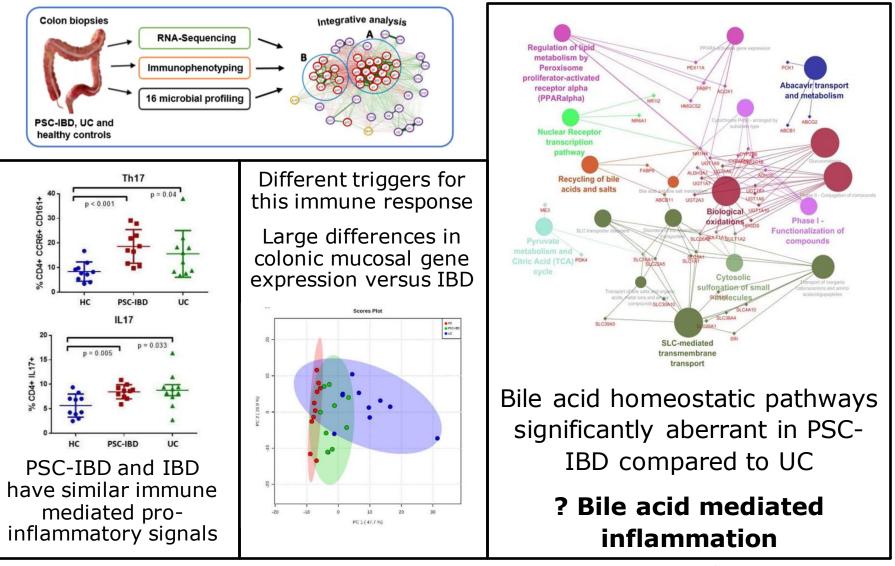

1.00

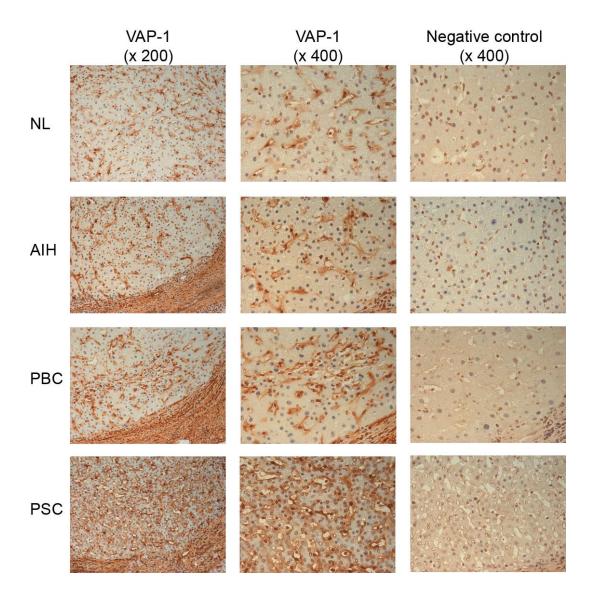
Microbiome changes in autoimmune liver disease: aetiology or severity?



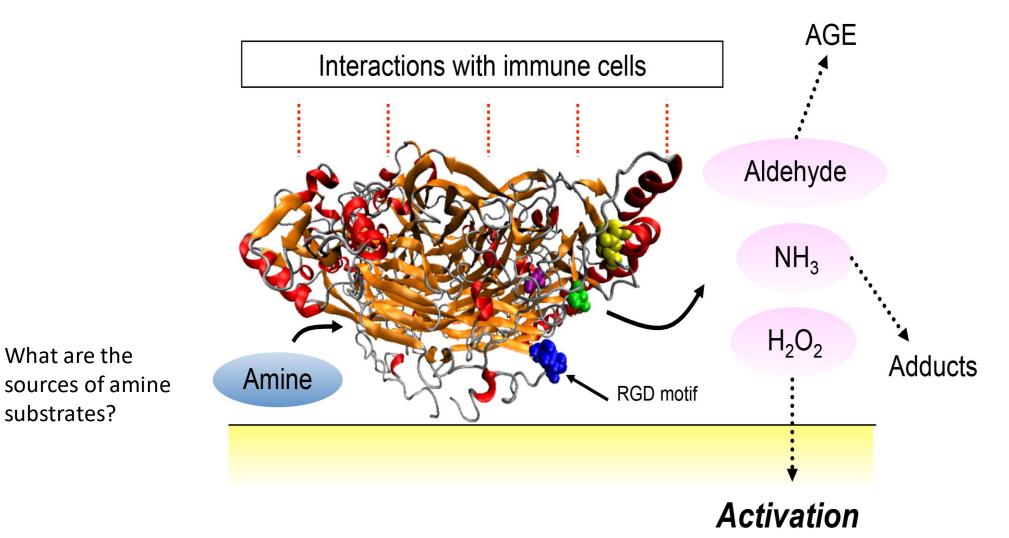

Dysbiosis in PSC and PSC-IBD

PSC-IBD


Does this mean something or is it just a correlation due to changes in outflow of bile acid from liver?

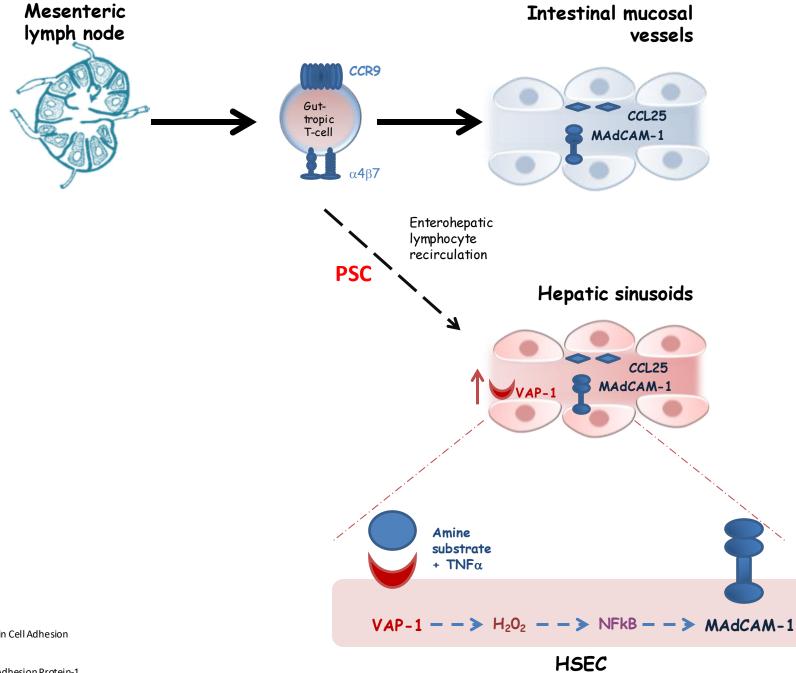

Quraishi MN et al. Gut. 2017 Sokol et al. Gut. 2015

PSC-IBD disease mechanisms appear to be different to IBD alone at a mucosal level


Quraishi, Hirschfield, Iqbal, et al. J Crohns Colitis. 2020

Hepatic vascular adhesion protein (VAP)-1 expression in autoimmune liver disease

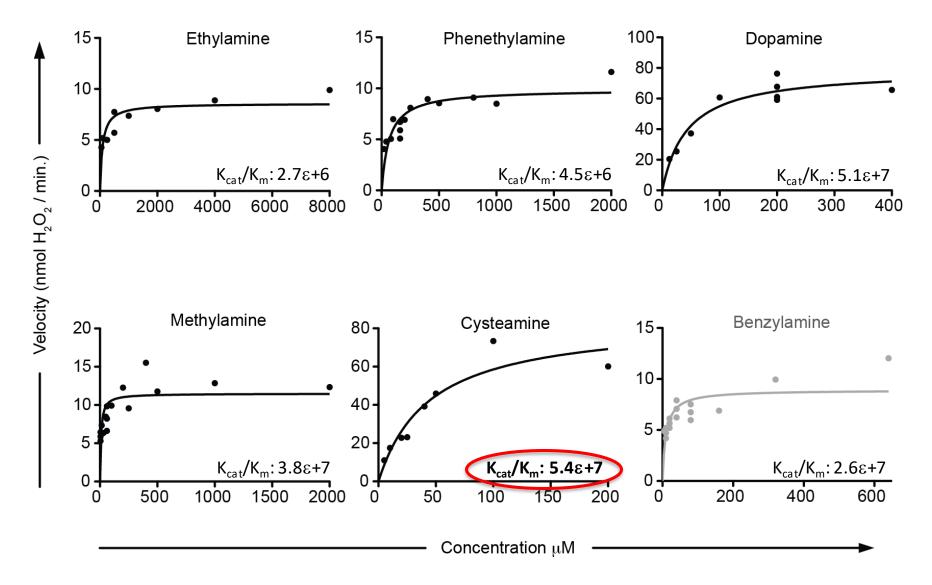
Trivedi, Liaskou, Adams, Weston et al. Gut 2018


Consequences of hepatic VAP-1 activation

What are the

substrates?

Weston and Adams J. Neur. Trans.. 2011



MAdCAM-1: Mucosal Addressin Cell Adhesion Molecule-1

VAP-1: Vascular Adhesion Protein-1

Trivedi and Adams. J. Autoimmun. 2013

VAP-1 activity is substrate dependent

Trivedi, Liaskou, Adams, Weston et al. Gut 2018

Cysteamine exposure can lead to colitis in mice

- Cysteamine induces colitis in mice
 - Klicek et al. 2013; *J. Physiol Pharmacol*.

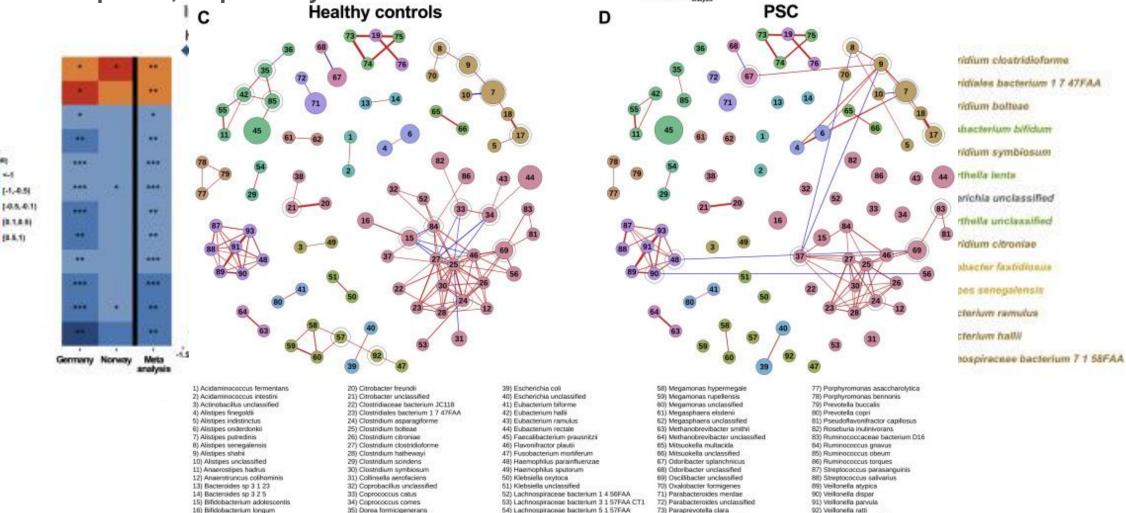
- Inflamed colonic epithelium and *Escherichia* and *Enterobacter* spp. main provider of cysteamine
 - Overexposure to cysteamine, colitis and cancer
 - Martin et al. 2004 J. Clin. Inv.
 - Gensollen et al. 2013 Inflamm. Bowel Dis
 - Inhibit cysteamine generation: attenuates colitis / prevents colorectal cancer
 - Berruyer et al. 2006 J. Exp. Med

Bacterial abundance co-correlation network

17) Bilophila unclassified

18) Bilophila wadsworthia

19) Burkholderiales bacterium 1 1 47


36) Dorea unclassified

37) Epperthelia unclassified

38) Enterplacter cloacae

log/045

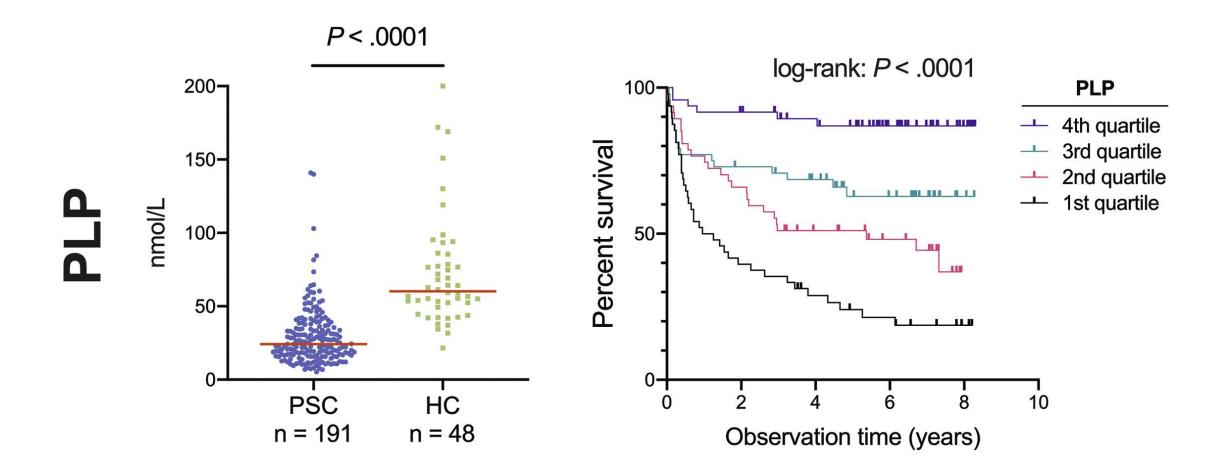
Red and *blue lines* in (*C*) and (*D*) indicate positive and negative correlations between species, respectively.

55) Lachnospiraceae bacterium 5 1 63FAA

56) Lachnospiraceae bacterium 7 1 58FAA

57) Megamonas funiformis

74) Paraprevotella unclassified


75) Paraprevotella xylaniphila

76) Parasutterella excrementihominis

93) Veillonefla unclassified

Kummen et al. Gastro 2021

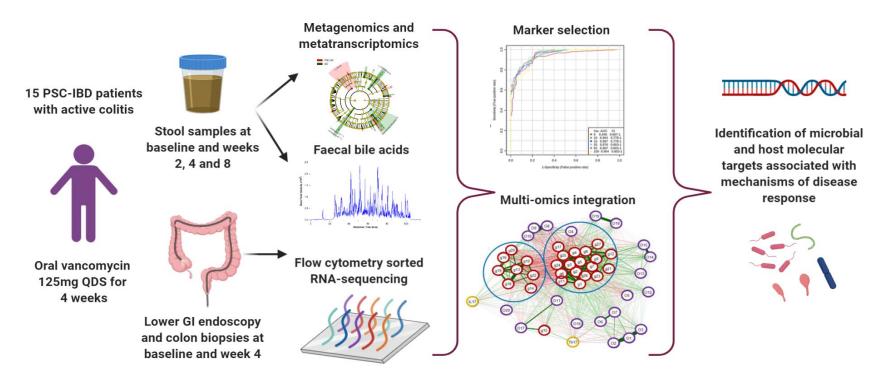
Down regulation of vit. B6 synthesis is associated with poorer clinical outcomes in PSC

PLP = pyridoxal 5'-phosphate Active form of vitamin B6

Kummen et al. Gastro. 2021 Braadland et al. J. Hepatol. 2023

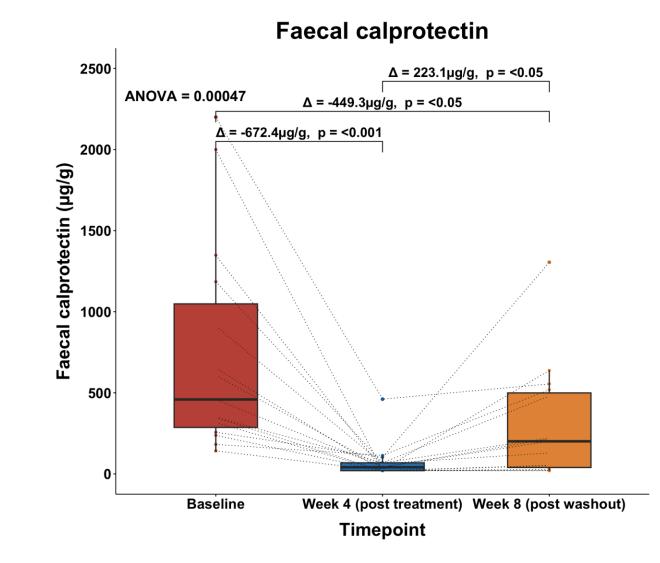
Vancomycin for colitis in PSC-IBD

- 17 children with PSC-IBD
- All 15/15 normalised to <200
- Mean faecal calprotectin improved from 1055 to 51
- PSC-IBD (n=8, OLT=5)
- Vancomycin 125mg QDS 6 to 8 weeks
- Mean reduction of Mayo Score (UC) 7 points

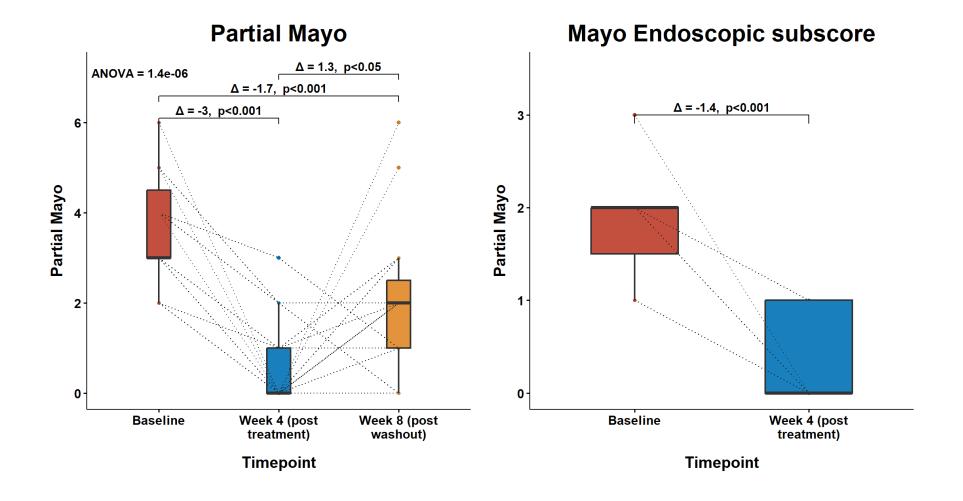

Table 1 Comparison of indication, colonoscopy finding and liver phenotype at baseline and during treatment w					Liver		Current OV, Total Dose/	Additional	UC Mayo Score Pre-OV Initiation (Clinical/ Endoscopic/	UC Mayo Score Post-OV Initiation (Clinical/ Endoscopic/	UC Mayo Score Reduction				
Age	ge OV Indication Colonoscopy PUCAI FC Liver phenotype														
1	15 Failed CMT: Pre-OV Mayo 3 40 960 Cirrhosis negative	Patient	Transplant for PSC	Prior Failed Treatment	Day, mg	Immunosuppression While on OV	Physician Assessment)	Physician Assessment)	After OV Initiation	Longest Remission Time/Current Status					
5-ASA steroids TP O UDCA	steroids		Pancolitis Rectal sparing			PHT negative Fibrosis 3	Female 19 y	transplant 6-M	5-ASA 6-MP Methotrexate		Low-dose prednisone Tacrolimus Sirolimus	9 (5/2/2)	0 (0/0/0)	-9	30 mo Clinical Mayo 0 Endoscopic Mayo at
	On OV Mayo 0 Histology normal	0 26			Budesonide Infliximab Adalimumab		liximab					24 mo: 0			
							Female 31 y	PSC without cirrhosis	5-ASA	375	None	8 (5/2/1)	0 (0/0/0)	-8	24 mo Clinical Mayo 0 Endoscopic Mayo at
	Failed CMT: Steroids	Pre-OV	Mayo 3 Worse right side	30	30 500	Cirrhosis negative PHT negative	Female 52 y	Liver transplant	5-ASA 6-MP	375	Tacrolimus Mycophenolate	11 (6/2/3)	0 (0/0/0)	-11	24 mo: 0 19 mo Clinical Mayo 0
	TP On OV Mayo 0 MTX Histology mild	0	150 Fib	Fibrosis 1			Vedolizumab						However, underwent total colectomy for flat high-grade dysplasia		
15	IFX Failed CMT:	Pre-OV	Mayo 2	45	1531	Cirrhosis negative	Female 44 y	Liver trans- plant x2	5-ASA 6-MP	375	Budesonide Tacrolimus	7 (3/2/2)	0(0/0/0)	-7	36 mo Clinical Mayo 0 Endoscopic Mayo at
15	EEN Pancolitis PHT negative	PHT negative	Male 39 y	Liver transplant	Infliximab Ustekinumab	750	Low-dose prednisone	7 (3/2/2)	0(0/0/0)	-7	36 mo: 1 14 mo Clinical Mayo 0				
	Steroids TP MTX IFX	On OV	Mayo 0 Histology normal	0	77		Female 33 y	Liver transplant	Vedolizumab 5-ASA 6-MP Infliximab Adalimumab Vedolizumab q8 wk	375	Vedolizumab	8 (4/2/2)	2(2/NA/0) fecal calprotectin normalized	-6	9 mo Clinical Mayo 0
A	F-U-J CMT	D OV	Marca 0	10	220	Circle and a second second	Male 42 y	PSC without cirrhosis	Vedolizumab q8 wk 5-ASA Infliximab Vedolizumab	375	Azathioprine	6 (2/2/2)	1 (0/1/0)	-5	12 mo Clinical Mayo 0 Endoscopy Mayo at

Tan Li-Za et al. Gut. 2019

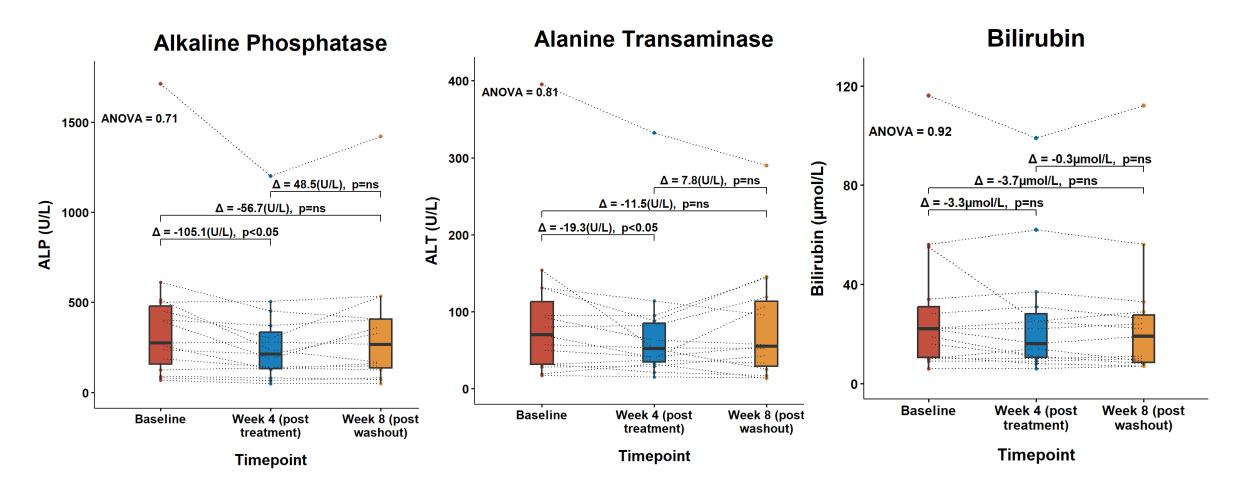
Dao A et al. IBD. 2019

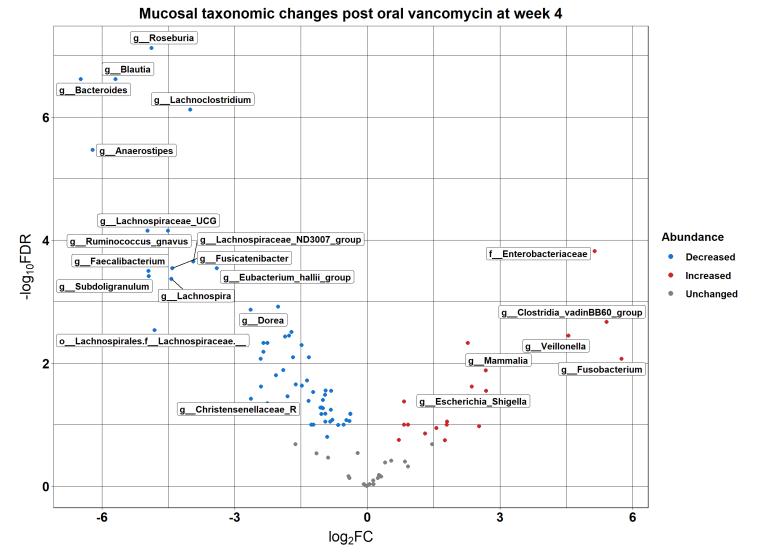

mo 1

PSC-Vancomycin study (NCT05376228) ECCO Grant 2021

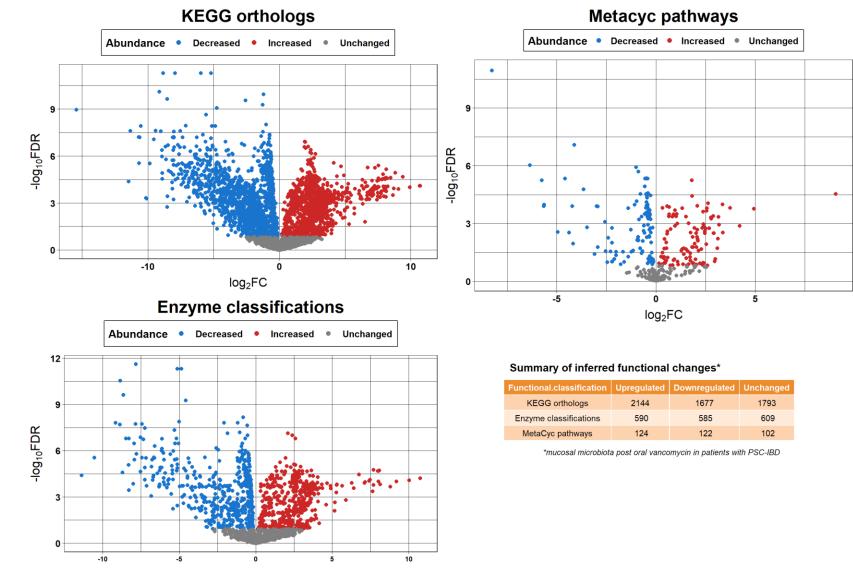


- Completed in Nov 2022
- Clinical and mucosal microbiota data so far
- Colonic RNA-seq, metagenomic, metatranscriptomics readouts by Jan 2024

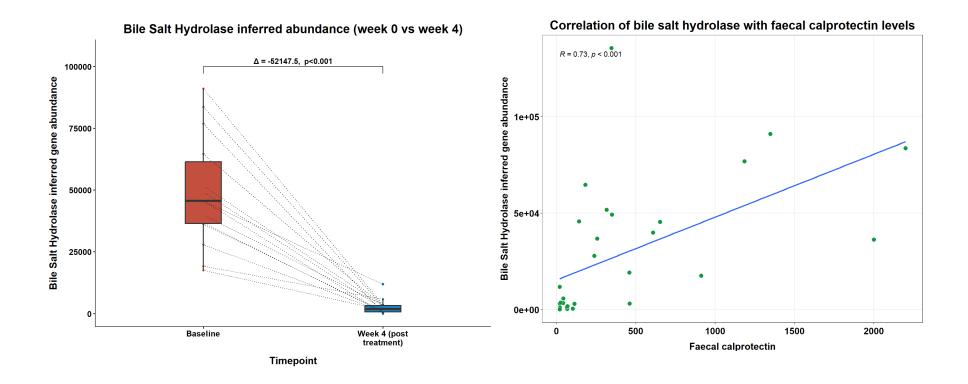

IBD activity – faecal calprotectin


Clinical outcomes – Mayo scores

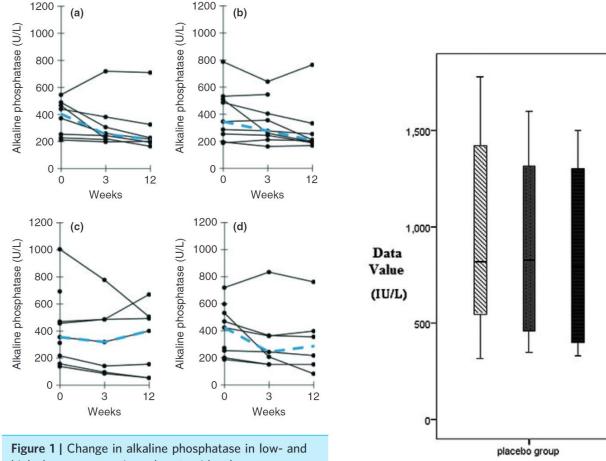
Clinical outcomes – liver biochemistry



Taxonomic changes post oral vancomycin


Dr M Nabil Quraishi

Shifts in microbial metabolic pathways


log₂FC

The bile acid deconjugation pathway

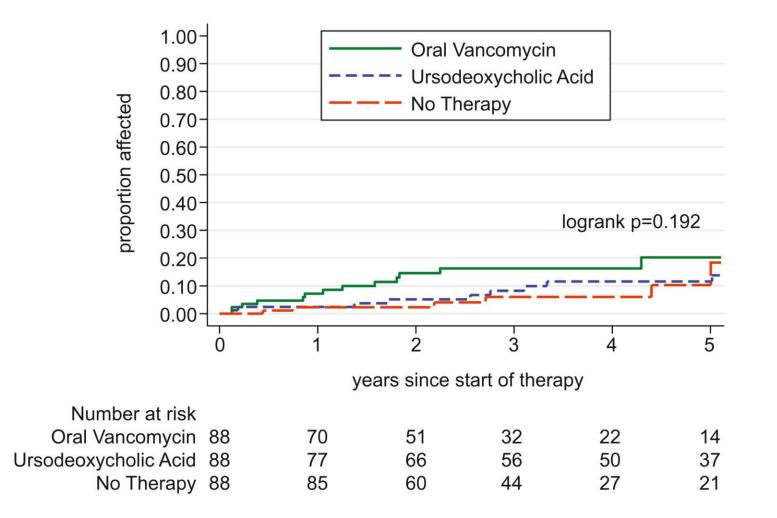
- Bile salt hydrolase (BSH) producing bacteria are knocked out
- BSH levels correlate strongly with faecal calprotectin
- BSH producers depletion cause of remission or just an effect of vancomycin?

Oral vancomycin for PSC in adults

Alkaline Phosphatase (ALKP)

vancomycine group

20

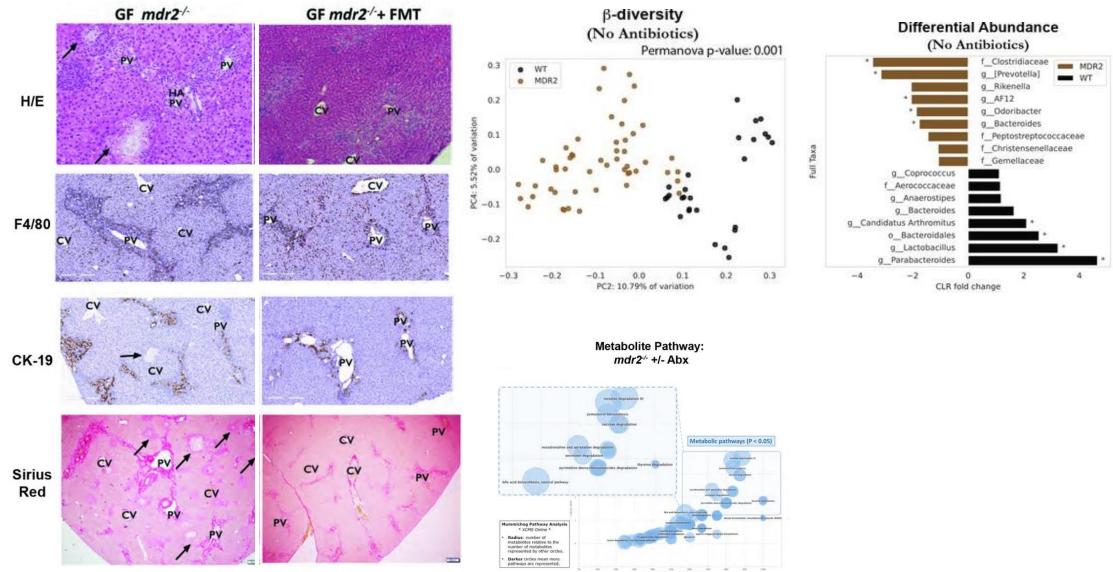

ALKP_BASE

ALKP_1

Fig. 4. Serum alkaline phosphatase (ALP) level box plot for the vancomycin and placebo groups during 3 moments of the study (baseline, first month, and third month)


Figure 1 | Change in alkaline phosphatase in low- and high-dose vancomycin and metronidazole groups: (a) low-dose vancomycin, (b) high-dose vancomycin, (c) low-dose metronidazole, (d) high-dose metronidazole. Decrease in alkaline phosphatase was significant in the low- and high-dose vancomycin groups (P = 0.03 and P = 0.02 respectively). Note: Bold, dashed lines represent the group medians. Outlier present (top curve) in low-dose vancomycin group.

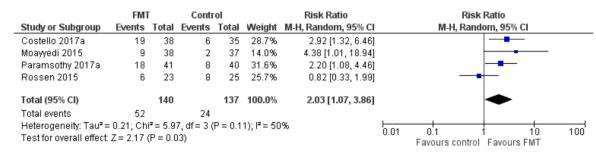
Is oral vancomycin beneficial for liver disease in PSC?


Data from the International Paediatric PSC Consortium; Deneau et al. Hepatology. 2020

Oral vancomycin exacerbates biliary fibrosis in mice

Awoniyi et al. Gut 2022

Faecal microbiota transplantation attenuates biliary injury in an experimental model of sclerosing cholangitis


"Lachnospiraceae-enriched"

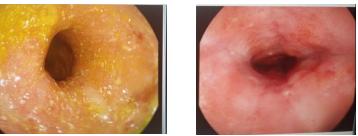
Awoniyi et al. Gut 2022

Faecal microbiota transplantation (FMT) in u. colitis

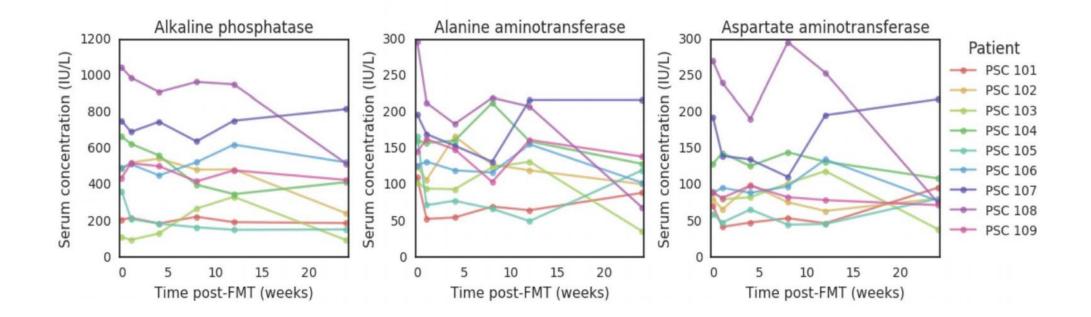
 Meta-analysis: Remission in 28% patients in the donor FMT groups compared with 9% patients in the placebo groups

Figure 3. Forest plot of comparison: I Fecal microbiota transplantation versus control for participants with ulcerative colitis, outcome: 1.1 Clinical remission at 8 weeks.

Imdad A et al. Cochrane Review. 2018


STOP-Colitis pilot (FMT for UC – Birmingham, St Marks, Glasgow)

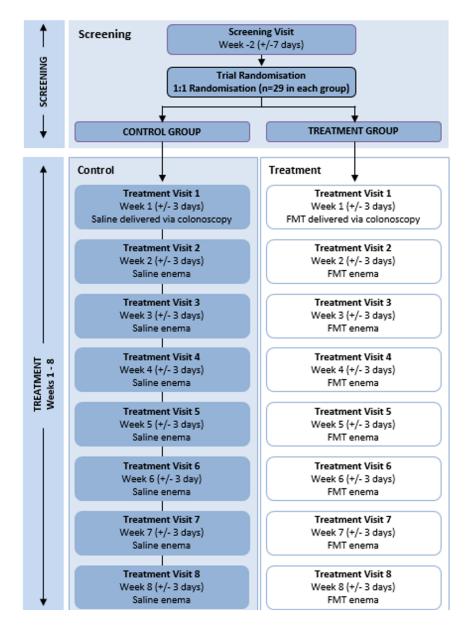
Patient A – < 1 year, on azathioprine



Patient B – > 5 years, failed 3 biologics

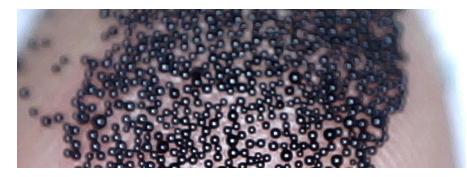
FMT for PSC - Pilot

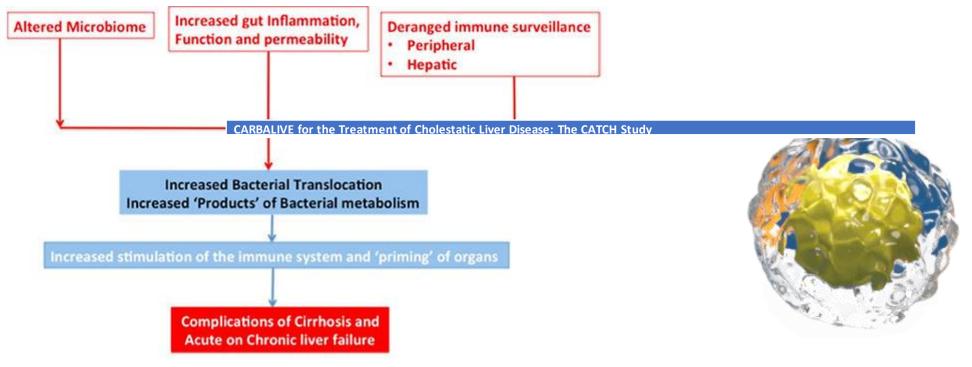
- 10 patients with PSC; primary outcome was safety
- 9 with IBD and 9 with large duct PSC
- Single dose of colonoscopically administered FMT



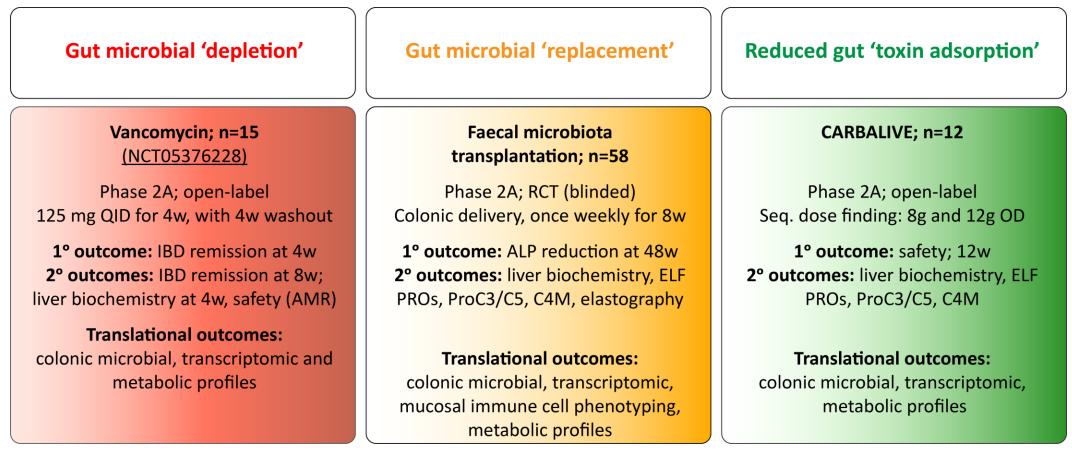
FMT in PSC – FARGO RCT

FARGO: A randomised, phase IIa, multi-centre, (double blind) placebo-controlled trial of <u>**FA**</u>ecal microbiota transplantation in prima<u>**R**</u>y sclerosin<u>**G**</u> ch<u>o</u>langitis


Grant awarded 2022 Due to open in Q4 2023

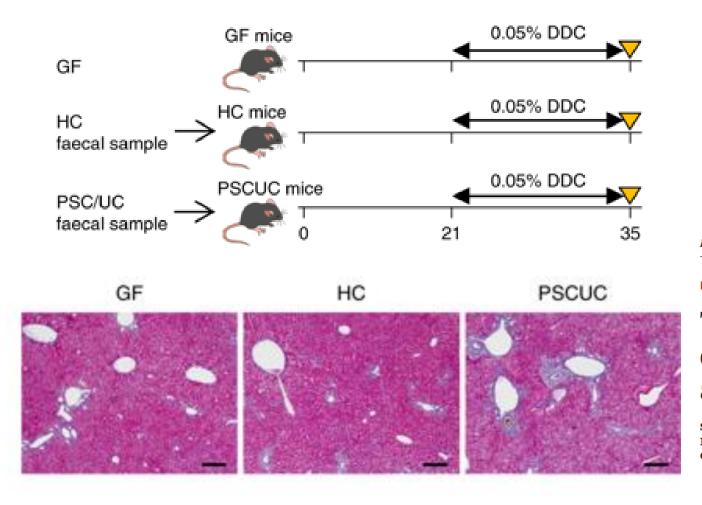

Multicentre, nationwide RCT

CARBALIVE for the Treatment of Advanced Cholestatic Disease: The CATCH Study


Funded March 2023

Images courtesy of Yaqrit Discovery Ltd.

UK PSC microbial therapeutics' programme



PSC with active colitis

PSC-IBD without advanced fibrosis

PSC-IBD with modadvanced fibrosis

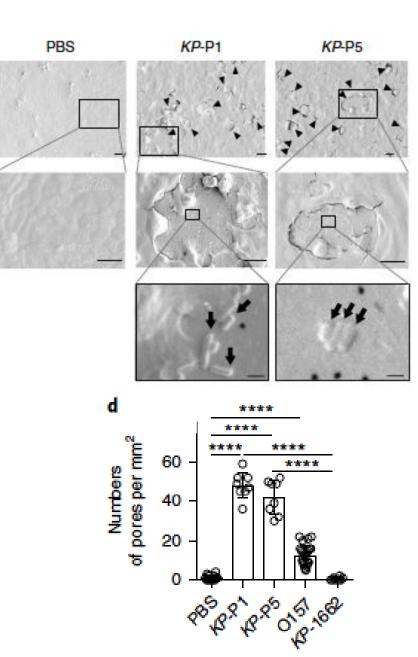
Faecal matter transfer from patients induces colitis and biliary fibrosis in mice

Specific bacterial species associated with PSC/UC:

- K. pneumoniae
- P. mirabilis
- E. gallinarum

RESEARCH

MICROBIOTA


Translocation of a gut pathobiont drives autoimmunity in mice and humans

S. Manfredo Vieira,¹ M. Hiltensperger,¹ V. Kumar,² D. Zegarra-Ruiz,¹ C. Dehner,¹ N. Khan,¹ F. R. C. Costa,^{1*} E. Tiniakou,¹† T. Greiling,¹‡ W. Ruff,¹ A. Barbieri,³ C. Kriegel,¹ S. S. Mehta,⁴ J. R. Knight,⁴ D. Jain,³ A. L. Goodman,⁵ M. A. Kriegel^{1,2}§

- Klebsiella pneumoniae (Kp) in stool of patients with PSC-IBD
- Transplanted *Kp* to germ-free mice
- Kp directly ruptured the intestinal epithelia with translocation, endotoxemia, and liver damage
- Kp was associated with susceptibility to Th17-mediated hepatobiliary injury
- Antibiotic therapy ameliorated Kp induced immune responses.

Is Kp relevant to human PSC? Therapeutic approach?

Assis DN et al. Yale

Primary sclerosing cholangitis industry drug development pipeline

			Volixibat potassium Mirum Pharmaceuticals IBAT inhibitor	
Vedolizumab Takeda Evotec a4b7 integrin agonist			Berberine ursodeoxycholate HighTide Therapeutics Unspecified	
GRI-0124	HM-15211	SCO-240	CM-101	
GRI Bio	Hanmi Pharmaceutical	Scohia Pharma	Chemomab/Abzena	
NKT cell stimulant	GLP-1/GIP/GCG agonist	SSTR5 antagonist	CCL24 antagonist	
H-01 Halo Biosciences Hyaluronan synthase inhibitor	Metabolic and infectious disease therapy CD3 Centre for Drug Design IBAT inhibitor	A-3907 Albireo Pharma IBAT inhibitor	HK-660S Curome Biosciences NAD+ modulator	
Rock2 Inhibitor	odevixibat	CS-0159	Orbcell-C	
Angion Biomedica	Albireo Pharma/Jadeite Medicines	Cascade Pharmaceuticals	Orbsen Therapeutics	
ROCK2 inhibitor	IBAT inhibitor	FXR agonist	IV MSC therapy	
ST-003	PSC therapy	HPG-1860	PLN-74809	
SteroTherapeutics	Engitix Therapeutics	Hepagene Therapeutics	Pilant Therapeutics	
GAL antagonist	Unspecified	FXR agonist	a1b6 integrin antagonist	
BX-002	PV-201	INVA-8001	Seladelpar	Norursodeoxycholic acid
BiomX	Parvus Therapeutics	Invea Therapeutics	CymaBay Therapeutics	Dr. Falk Pharma/Eisai
Microbiome modulator	Unspecified	Immunosuppressant	PPAR-d agonists	Cholesterol inhibitor
Elafibranor	setanaxib	STP-707	Vidofludimus calcium	Cilofexor
Genfit Ipsen	Calliditas Therapeutics	Sirnaomics	Immunic 4SC	Gilead/Phenex
PPAR-a/PPAR-d agonist	NADPH oxidase 1/4 inhibitor	TGF-81/Cox-2 gene inhibition	DHODH inhibitor	FXR agonist
Prec	linical	Phase I	Phase II	Phase III